Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Pain ; 14: 100145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099278

RESUMO

Chronic pain develops following injury in approximately 20% of adolescents, at twice the rate in females than males. Adverse childhood experiences also increase the risk for poor health outcomes, such as chronic pain. Emerging literature suggests the cerebellum to be involved in pain processing, however detailed explorations into how the cerebellum contributes to pain are lacking. Therefore, this study aimed to characterise chronic pain outcomes and cerebellar gene expression changes following early life stress and injury in both sexes. The adverse childhood experience of neglect was modelled using a maternal separation (MS) paradigm, which was combined with a subsequent injury (mild traumatic brain injury (mTBI) or plantar incision surgery) in adolescent male and female Sprague-Dawley rats. We measured behavioural nociceptive sensitivity, systemic modulators of pain such as calcitonin gene-related protein (CGRP) and Substance P, as well as gene expression of IL1ß, GFAP, GR, MR, GABRA1, CNR1, MAOA, and DAT1 in the cerebellum to examine associations between pain and neuroinflammation, the stress response, inhibitory neurotransmission, and monoaminergic function. We found increases in mechanical nociceptive sensitivity following plantar incision surgery. Sex differences were observed in anxiety-like behaviour and neuroinflammation, whereas systemic pain modulators showed cumulative effects with the addition of stressors. Most interestingly however, the increases in nociceptive sensitivity were associated with the suppressed expression of cerebellar genes that regulate stress, inhibition, cannabinoid function, and dopaminergic function, alongside sex-dependent distinctions for genes involved in inflammation and injury. This study highlights a novel link between nociception and molecular function in the cerebellum. Further investigation into how the cerebellum contributes to pain in males and females will facilitate novel therapeutic insights and opportunities.

2.
Dev Neurobiol ; 83(5-6): 219-233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37488954

RESUMO

Adolescent chronic pain is a growing public health epidemic. Our understanding of its etiology is limited; however, several factors can increase susceptibility, often developing in response to an acute pain trigger such as a surgical procedure or mild traumatic brain injury (mTBI), or an adverse childhood experience (ACE). Additionally, the prevalence and manifestation of chronic pain is sexually dimorphic, with double the rates in females than males. Despite this, the majority of pre-clinical pain research focuses on males, leaving a gap in mechanistic understanding for females. Given that emerging evidence has linked the gut microbiome and the brain-gut-immune axis to various pain disorders, we aimed to investigate sex-dependent changes in taxonomic and functional gut microbiome features following an ACE and acute injury as chronic pain triggers. Male and female Sprague Dawley rat pups were randomly assigned to either a maternal separation (MS) or no stress paradigm, then further into a sham, mTBI, or surgery condition. Chronically, the von Frey test was used to measure mechanical nociception, and fecal samples were collected for 16S rRNA sequencing. Animals in the surgery group had an increase in pain sensitivity when compared to mTBI and sham groups, and this was complemented by changes to the gut microbiome. In addition, significant sex differences were identified in gut microbiome composition, which were exacerbated in response to MS. Overall, we provide preliminary evidence for sex differences and ACE-induced changes in bacterial composition that, when combined, may be contributing to heterogeneity in pain outcomes.


Assuntos
Dor Crônica , Microbioma Gastrointestinal , Animais , Feminino , Masculino , Ratos , Microbioma Gastrointestinal/genética , Instinto , Privação Materna , Nociceptividade , Ratos Sprague-Dawley , RNA Ribossômico 16S/genética , Caracteres Sexuais
3.
Cereb Cortex Commun ; 2(2): tgab014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34296160

RESUMO

Although adverse early experiences prime individuals to be at increased risk for chronic pain, little research has examined the trauma-pain relationship in early life or the underlying mechanisms that drive pathology over time. Given that early experiences can potentiate the nociceptive response, this study aimed to examine the effects of a high-fat, high-sugar (HFHS) diet and early life stress (maternal separation [MS]) on pain outcomes in male and female adolescent rats. Half of the rats also underwent a plantar-incision surgery to investigate how the pain system responded to a mildly painful stimuli in adolescence. Compared with controls, animals that were on the HFHS diet, experienced MS, or had exposure to both, exhibited increased anxiety-like behavior and altered thermal and mechanical nociception at baseline and following the surgery. Advanced magnetic resonance imaging demonstrated that the HFHS diet and MS altered the maturation of the brain, leading to changes in brain volume and diffusivity within the anterior cingulate, amygdala, corpus callosum, nucleus accumbens, and thalamus, while also modifying the integrity of the corticospinal tracts. The effects of MS and HFHS diet were often cumulative, producing exacerbated pain sensitivity and increased neurobiological change. As early experiences are modifiable, understanding their role in pain may provide targets for early intervention/prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA